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Conductivity for one-dimensional disordered classical systems: 
A computer simulation 

Reiner Biller 
Institut fur Theorie der Kondensierten Materie, Universitat Karlsruhe, Kaiserstrasse 12, 
75 Karlsruhe, West Germany 

Received I June 1984 

Abstract. A simple computer simulation for one-dimensional, classical, disordered systems 
with symmetric hopping rates is presented, which is well suited for vectorised programming. 

The data for the frequency-dependent conductivity are compared to analytical results 
for various classes of distributions of the transfer rates. In particular, for singular distribu- 
tions of the form p (  W) - W-", O S  W S  1, it is demonstrated that the well known effective 
medium theory is an excellent approximation for -1 s a 5 0.9. 

1. Introduction 

Recently considerable interest has been devoted to the study of one-dimensional ( I D ) ,  
disordered, classical systems (Alexander et a1 1981a). These studies provide a rather 
good explanation for conductivity measurements in the I D  superionic conductor 
Hollandite and the quasi-ID conductor Qn(TCNQ), (Alexander and Bernasconi 
1979, Alexander ef a1 1981~).  

Depending on the class of disorder under consideration, a variety of methods has 
been presented to determine the frequency-dependent conductivity for these systems: 
rigorous results have been obtained for non-singular distributions, where all moments 
and inverse moments of the distribution of the transfer rates exist (Zwanzig 1982, 
Denteneer and Ernst 1983, Biller 1984a). These systems show a universal long-time 
behaviour and the DC conductivity is given by the first inverse moment of the distribution 
of the transfer rates. For systems, where all (or at least some) of the inverse moments 
do not exist, the situation is less clear: apart from the effective medium theory and a 
simple scaling argument (Alexander et a1 1981a, Alexander and Bernasconi 1979) there 
exists a rigorous solution for the low-frequency autocorrelation function for these 
systems, which can be connected with the conductivity by a scaling relation (Bernasconi 
et a1 1980). Stephen and Kariotis (1982), using the replica trick, obtain the same result. 
Although all of these methods predict the same non-universal low-frequency conduc- 
tivity for distributions of the form p(  W ) -  W-", 0 s  W s  1, all of them are based on 
assumptions to determine this quantity. 

An exact solution however, can be given for another class of systems: the I D  

bond-percolation model (Odagaki and Lax 1980). I will use this system later on to 
demonstrate the quality of my simulations. 
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The intention of this work is not only to provide a test for analytical results so far 
obtained for singular distributions, but also to present a simple procedure for simulating 
these systems. This procedure is well suited for parallel processing on a Cyber 205 
vector processor. It should also be applicable to two- and three-dimensional systems. 

2. Model equations and analytical results 

We consider the fallowing set of coupled rate equations, connecting the change in 
particle density d,P,, at site n, with the current to sites n and n - 1 (Biller 1984a) 

d , P n + j n - j n + l = O  ( 1 )  

where, assuming symmetric hopping rates, 

j,, = - Wn(Pn+l - Pn - E ( t ) ) .  (2) 

Using linear response theory, I have included an external field E ( ? )  explicitly in the 
current (Biller 1984b). Note that P,, may not only be interpreted as the change in 
particle density due to the external field E, but also as the particle density itself, because 
only the difference in the P,, matters. The W,, are assumed to be random transfer rates 
which are uncorrelated in space, having one of the following distributions. 

Class (A): p (  W) such that all ( W"') and all (1/  W"') exist (non-singular distribu- 
tions). As an example, we will consider the following distribution 

(3) p (  W) =;[a( w - f ) + a (  w-;)]. 
Class (B): p (  W) such that only the first r inverse moments exist: ( 1 /  W"') finite 

for m 6 r, and (1/ Wm)-' = 0 for m > r. A particular example ( r  = 1) for this class of 
distributions is the following form 

p (  W) = ( 1  -a) w-", 0 s  W s 1 ,  -1 s a <o.  (4) 

Class (C):  p (  W) such that no inverse moment exists: ( 1 /  W"')-' = O  for m 3 1. 
Here we will consider a similar form as for class (B) (Alexander et a1 198 1 a)  

p(  W )  = ( 1  - a )  w-", os w s  1, O S a < l .  (5) 

p (  W) = ( 1  - P M  W) +Pa( W- 11, 

Class (D): 

O S P S l .  (6) 

This is the bond-percolation model (Odagaki and Lax 1980), where we have a finite 
probability for the W to be zero. 

For later reference let me quote the analytical results obtained for the various 
classes of distributions. For class (A) there exists an expansion for the conductivity 
in the low- and high-frequency limit (Zwanzig 1982, Denteneer and Ernst 1983, Biller 
1984a) 

g ( w )  = ( w-')-'[I + m - , ~ ' " + ( M m Z _ , - t m - ~ ) z  + o ( z ~ / ~ ) ]  (7)  

z = ( iww-I ) ,  m - ,  =((W-'-(W- ' ) )") / (W- ' )"  

( + ( U )  = ( W)[I -2n1,s-I +2m3s-, + o ( ~ - ~ ) ]  
s = iw(  W)-', mn = (( W-( W))")/( W)". (8) 
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For class (B) and (C) systems the conductivity may be determined from the well known 
effective medium (EM) relation (Alexander er a1 1981a) which reads 

(( W -  aeff)/[W+ f(gefi+iw)I) = 0, 

ae f i  = gefi(gefi +iw)/iw. 

( 9 )  

where g,, is related to aeff by 

I will compare iterative solutions of this relation with my simulations later on. 

has asymptotically for class (B) systems (see also Richards and Renken 1980) 
Using for (9) the expansion procedure of Bernasconi and Schneider (1984) one 

aeff(o) = aDc(l   io)'^'''), -1<a<o,  i w + O  (10) 
where 

and 

aDC = l a  I/( + l a  1). 
The result for class (C) systems obtained by Bernasconi et a1 (1980) via a scaling 
assumption reads 

a ( w )  = Do(C;2)(io)e'(2-a) (11)  

where Do=$ and C, can be determined exactly, but is rather well described by the 
effective medium result 

(12) c,,~, = $ [ T (  1 - a)2"/sin 7 ~ a ] ~ ' ( ~ - ~ ) .  

Stephen and Kariotis have obtained equivalent results, using the replica trick. 

( 198 1 a)  obtain 
For a = 0, where the crossover from class (C) to class (B) occurs, Alexander er al 

do) = - ( 2 / P ( O ) ) ( l / w ~ ) ) .  (13) 

For class (D) systems the exact result for the conductivity is given by Odagaki and 
Lax. The limiting form for small frequencies reads 

a(o) = P P(1 + P I 2  
2 ( 1 - ~ ) ~ ~ ~ + 4 ( 1  - P ) ~ ~ * '  

3. Simulation procedure 

The simulation procedure now works as follows: ( 1 )  is discretised in time 

pn ( t + 7) = pn ( t )  - 7 ( j n  ( t - j n  - I ( t )  1 (15) 

where T < &  to keep the simulation stable, and t from now on is understood as a 
discrete variable. j n ( t )  is still given by (2). We take a system of 60000 sites with 
periodic boundary conditions. The Wn are determined at the beginning of the simula- 
tion with a pseudo-random number generator, according to one of the distributions 
(A)-(D) equations (3)-(6). 
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We start with the initial condition for Pn(0) = O  (or Pn(0)  = 1 )  and use for E ( t )  
either E (  t )  = 1 / ~ .  a,,, or E (  t )  = e( t ) .  Then in( t )  and Pn( t + T )  are determined for up 
to 200 000 time steps. At each time step the average current in the system is evaluated: 

Because of the large system size of N = 60 000 the fluctuations in j,, due to different 
realisations of the same ensemble are small, typically of the order of 2%. Now a( t )  
is determined from jav( t ) .  The result of course does not depend on the form chosen 
for E ( ? ) .  A final Fourier transform of a(? )  then gives a(@) for w down to 

The above procedure is particularly well suited for parallel processing on a Cyber 
205 vector processor. Thus it takes only about 13 minutes to determine j a v ( t )  for 
100 000 time steps and a system size of 60 000 sites. 

Error sources in this simulation are 
(i)  the finite discretisation parameter 7, which becomes particularly important at 

(ii) the finite number of time steps N,, which is of influence at small frequencies; 
(iii) the finite systems size N, which, I believe, is only important in the class (D) 

case at p close to p c ;  and 
(iv) numerical errors: a test for these errors is the particle number conservation. 

The largest deviation I observed for 1/N C, Pn( t = TN,) was lo-’, which is small and 
unimportant for our results. 

Altogether, for all figures displayed in this paper, the error should be of about the 
size of the symbols used for the graphs. 

high frequencies; 

4. Results and discussion 

4.1. Class (D) systems 

Let us start the discussion with the bond-percolation model (Odagaki and Lax 1980). 
Figure 1 shows the simulation results for the real and imaginary parts of the conductivity 
(aR(@), a I ( w ) )  for various values of p compared with the exact solution (equation 
(10) in the work of Odagaki and Lax). The system size was N = 60 000 sites and the 
number of time steps was N, = 50 000. There are virtually no deviations from the exact 
result, apart from some small errors in aI for w = 1, which could be removed by taking 
a smaller time constant T!  I should mention, however, that deviations do occur for p 
close to p c  = 1. Thus for p = 0.98 and N, = 100 000 I observed an error of about 15% 
for w = 2 x I 0-4, which was down at about 2% by taking a different realisation. These 
errors originate in fluctuations, which become large for p close to p c ,  and also in the 
fact that close to p c  the current decays very slowly. 

Thus, if one were interested in the conductivity close to p c  the system size N and 
the number of time steps N ,  should be increased. Here numerical errors may finally 
become important. Still the critical behaviour for uR and aI as predicted by equation 
(14) can be observed. 

4.2. Class (A) systems 

A simple class (A) system is given by (3), where the bonds can assume only two finite 
values. This system was simulated for N,  = 100 000, using different parameters T for 
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 IO-^ 10-2 10-l 1 
W 

Figure 1. Real and imaginary part of the conductivity ( a )  uR(w) ,  ( b )  q ( w )  for the 
bond-percolation model (class (D), equation (6)) for various values of p .  The simulation 
results (-) are compared to the exact solution (- - - -) (Odagaki and Lax 1980). 

small and high frequencies. The result is shown in figure 2. The crossover from low- 
to high-frequency behaviour, where the analytical expansion breaks down, can be 
clearly seen. Note that Monte Carlo simulations previously done for this class of 
systems only determined (x’( r)) (and higher moments), whereas here a(o) is given 
directly for more than six decades in o (Richards and Renken 1980, Haus er a1 1982). 

10-3 
I /  

10-3 10-2 IO-’ I io1 i o 2  10) 
w 

0.71 , 

10-3 10-2 IO-’ I io1  i o 2  
W 

Figure 2. ( a )  u R ( w ) ,  ( b )  u I ( w )  for a particular class (A) distribution (equation (3)). 
Simulation results (-), analytical results (- - - -) equations (7) and (8) for low and high 
frequencies, respectively. 
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4.3. Class (C) and class (B)  systems 

The most interesting class of distributions is given by class (C) systems ( 5 ) ,  because 
there, the first inverse moment does not exist, and a is expected to show a non-universal 
a-dependent low-frequency behaviour (Alexander et a1 198 1 a, Bernasconi et a1 1979, 
Alexander and Bernasconi 1979, Bernasconi et a1 1980, Stephen and Kariotis 1982). 
Our choice for a class (B) system (4) should, however, be interesting too: although 
there is a finite DC conductivity given by cDC = (W- ' ) - '  one expects non-universal 
behaviour in ( a  - aDc) due to the fact that m2 and all higher inverse moments diverge 
for this distribution (Richards and Renken 1980, Bernasconi and Beyelen 1980). 

Let us first concentrate on class (C) systems: figure 3 shows the long-time behaviour 
of a( t )  for various values of (Y compared with the theoretically expected dependence 
of grh z t - 2 / ' 2 - " '  . The curves were fitted such that ath(Nt) = a( Nt). Obviously the 
slopes agree well for intermediate values of a, whereas deviations occur at cy close to 
zero and one. In figure 4 the real and imaginary parts of a ( w )  are compared with 
expression ( 1 1 ) .  As with the long-time behaviour of ~ ( t ) ,  one observes that the 
theoretical result ( 1  1) agrees well with our data for intermediate values of a. However, 
it has already been pointed out by Richard and Renken and Bernasconi and Beyeler, 
that for small a relation ( 1  1) is not sufficient, but higher-order terms in the expansion 
0 f . a  become important for the frequencies we are able to consider here. The same 
thing happens for ( I  -CY)<< 1, I was told by Bernasconi and Schneider (1984). Thus 
for 0 < a G 0.3 and 0.9 < a < 1 the limiting form ( 1  1) can only be seen for extremely 
small frequencies, out of reach for our simulations. However, one may solve the 
EM-relation (9) iteratively (see figure 4). The excellent agreement with the numerical 

t 

Figure 3. Long-time behaviour of the conductivity a(r) for class ( C )  systems (equation 
( 5 ) )  for various (2. The simulation results (-1 are compared with the theoretically 
expected behaviour aLh - t-2''2-o' (- - - -1. The curves for ath were fitted such that 
urh(N,)=v(N,) ,  N,= 100000. 
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10-31 L’ A9 I 
10-L IO+ IO+ lo-’ 

I I 
I 0-3 10-2 lo-’ 

W W 

Figure 4. Real and imaginary part of the conductivity (a )  u,(w), ( b )  o I ( w )  for class (C) 
distributions (equation ( 5 ) )  for various a. Simulation results: +, (-); analytical results 
(equation (10)): (- - - -); iterative solution of the EM-relation (equation (9)): 0. (The 
values of U, for a =0.9 in (a )  are enlarged by a factor of 10). 

data shows that the effective medium relation (9) is indeed a very good approximation 
for all values of a d 0.9. This is again demonstrated in figure 5 where the real and 
imaginary parts of (T are displayed as functions of LY for o = 2 x and - 1 .OS a 6 0.9. 
Note the rather good agreement of the data with (1 1) (using the EM-result equation 
(12)) for 0.9 > LY > 0.4 and with the iterative solution of the EM-relation (9). 

At a = 0 the crossover from class (C) to class (B)  occurs. Class (B)  systems and 
the case a = 0 are displayed in figure 6.  Equation (13) for a = 0 and (10) for O> a > - 1 
are not sufficient for the frequencies considered here, but again the iterative solution 
of the EM-relation (9) agrees well with our results. 

Figure 5. Real and imaginary part of u ( w )  for o = 2 X as a function of a for 
0.9 5 a P -1. Simulation results: U,: +, u ~ :  x ;  analytical results (equation (IO)) :  U,: -, 
ol: - - - - -: iterative solution of the EM-relation (9): 0. 
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In figure 6, I have subtracted the theoretically expected value for uDC from gR 
(aDc is of course poorly determined by the simulation) to show the non-universal 
behaviour in (uR- a,,,-), which can also be seen in U* (figure 6 ( b ) ) .  It should be noted 
that, for (Y < -1, one expects non-universal behaviour in higher terms of the expansion 
of U (see (9)). 

I 1 0 - 3 L  10-31 ,-J 

I 

1 o-3 I O +  lo- ’  IO+ IO+ 10-2 lo-’ 
0 W 

Figure 6.  Real and imaginary part of the conductivity ( a )  o R ( w )  - oDC, ( b )  a , ( w )  for class 
( B )  distributions (4) for various a and the case a = 0. Simulation results: +, -; analytical 
results (12): - - - - -; iterative solution of the EM-relation: 0. 

5. Summary 

I have presented a simple simulation procedure to determine directly the frequency- 
dependent conductivity for I D  disordered, classical systems. This procedure is suited 
for vectorisation on a Cyber 205 vector processor. Therefore, large systems of 60 000 
sites can be simulated in a reasonable amount of time. The quality of the simulations 
was demonstrated in a comparison with exact results for the bond-percolation model 
(class (D))  (Odagaki and Lax 1980) and for a model with a non-singular distribution 
of the transfer rates (class (A) )  (Biller 1984a). For systems with distributions of the 
transfer rates of the form p (  W )  = (1 - a )  W-“,  OG W G  1, -1 C a < 1, (class (B) and 
(C)), I have shown that the well known effective medium relation (Alexander et al 
1981a) is in good agreement with the data for cuGO.9. For class (B) systems 
( -  1 S a < 0), I have demonstrated that ( a  - aDc) shows non-universal behaviour. 

My procedure should also allow the simulation of certain asymmetric hopping 
models (Derrida and Orbach 1983, Biller 1984b). Of course there the stationary state 
should be established first, before one applies an external field to determine U. 

One might also try to find out about crossover effects due to nonlinearities in the 
external field E for class (C) and (D) systems (Alexander et a1 1981b, Movaghar et 
a1 1984, Prigodin and Samukhin 1983). 

Finally, I think the procedure can be generalised to study transport problems in 
disordered systems in higher dimensions (e.g. the bond-percolation model). 
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